

Innovative Medicines Initiative

DILI AND THE IMI SAFE-T* CONSORTIUM: QUALIFICATION OF NEW TRANSLATIONAL SAFETY BIOMARKERS

*Safer And Faster Evidence-based Translation

http://www.imi-safe-t.eu

Drug-Induced Liver Injury Conference, March 23 - 24, 2011 Silver Spring, MD

Michael Merz¹, Ina Schuppe Koistinen²

Outline

- SAFE-T objectives
- Structure and deliverables
- Biomarker qualification process
- Achievements
- Challenges
- Next steps

IMI SAFE-T Consortium

Objectives

- To evaluate utility of safety biomarkers for detecting, assessing, and monitoring drug induced kidney, liver, and vascular injury in humans.
- To develop assays and devices for clinical application of safety biomarkers
- To compile enough evidence to qualify safety biomarkers for regulatory decision making in clinical drug development and in a translational context
- To gain evidence for how safety biomarkers may also be used in the diagnosis of diseases and in clinical practice

Biomarker attributes of interest

- Patient level
- Lower injury threshold
- Earlier time to onset
- Larger extent of changes
- Improved specificity
- Better suited to monitor and predict clinical course
- Better suited to assess causality
- Population level
- Earlier and more specific signal detection in clinical development programs
- Improved mechanistic insight
- Superior in terms of identifying underlying pathology
- Better suited to predict human risk from animal toxicity

Key challenges for biomarker qualification

- Substantial background variability in initial candidate markers
- Biomarker response varies across different populations
- Large initial number of biomarker candidates requires substantial sample volumes to be taken
- Key target responses, i.e. specific adverse drug reactions, suitable and accessible for qualification are overall very rare
- Large sample sizes are required
- Multitude of patient populations need to be included

Qualification cannot be achieved by one company alone

SAFE-T participants

SAFE-T structure and deliverables

- Evidence-based decision making
- More reliable causality assessment
- Better mechanistic understanding
- Safer translation to clinical development
- Earlier and more specific signal detection
- Enhanced clinical monitoring
- Improved patient safety
- Reduced attrition rates
- Accelerated and safer approval of innovative medicines

Funding and timing

Financing

IMI funding: 13.9 mio EUR

EFPIA contribution, mainly in kind: 17.7 mio EUR

Contribution academia/SME: 4.1 mio EUR

Total project cost: 35.7 mio EUR

Timing:

• Starting date: June 15, 2009

Duration: Five years

Biomarker qualification process Elements and process flow

DILI biomarker candidates selected for qualification in in its property of the property of the

Serum or Plasma Marker	Assays		Liver specificity	Human data	Pathology				
Albumin mRNA			RT-PCR	✓	highly specific	yes	hepatocellular damage		
Microglobulin precursor (Ambp) mRNA			RT-PCR	✓	highly specific	yes	hepatocellular damage		
Micro RNA 122			RT-PCR	✓	specific	yes	hepatocellular damage		
Conjugated/unconjugated bile acids			LC-MS		highly specific	only in tissues	hepatocellular damage		
High mobility group box 1 (HMGB1)		*	LC-MS	✓	not specific	yes	cholestasis		
Cytokeratin 18 (KRT18)		*			not specific	yes	hepatocellular damage		
Alpha fetoprotein (AFP)		✓			specific	yes	hepatocellular damage		
Arginase 1		✓			highly specific	yes	hepatocellular damage		
Colony stimulating factor receptor (CSF1R)	Immuno-	✓			not specific	yes	inflammation		
F-protein (HPPD)	assays				highly specific	yes	hepatocellular damage		
Glutathione S transferase alpha (GSTα)	LMX	*			specific	yes	hepatocellular damage		
Leukocyte cell-derived chemotaxin 2 (LECT2)		✓			not specific	yes	inflammation		
ST6Gal 1		✓			specific	yes	inflammation		
Osteopontin		✓			not specific	yes	inflammation		
Ratio Paraoxonase (PON1) / Prothrombin		✓			not specific	yes	steatosis		
Regucalcin (RGN)					not specific	yes	steatosis		
ALT1/2				✓	specific	only in tissues	hepatocellular damage		
Glutamate dehydrogenase (GLUD, GLDH)			Enzyme	✓	highly specific	yes	hepatocellular damage		
Malat dehydrogenase (MDH)			activity	✓	specific	yes	hepatocellular damage		
Purine nucleoside phosphorylase (PNP)				✓	specific	no	hepatocellular damage		
	✓ SAFE-T has already developed an assay for singleplex measurement								
* ELISA commercially available									

DILI biomarker qualification:

The "population mosaic"

Currently planned clinical studies

- Multi-center study in patients with suspected drug-induced liver injury
- Single-center study in rheumatoid arthritis patients
- Single-center study in patients with acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) during anti-proliferative treatment
- Single-center study in patients receiving oxaliplatin based chemotherapy for advanced colorectal cancer
- Single-center study in colo-rectal cancer patients with liver metastases
- Single-center study in patients with chronic hepatitis C after liver transplantation
- Multi-center study in patients on antituberculosis treatment

SAFE-T achievements

- Generic qualification strategy defined
- Biomarker candidates prioritised, assay development ongoing
- Study protocols for prospective DILI studies submitted for IRB review
- Completed HV study to assess within and between subject variability (Sanofi Aventis), and secured access to HV samples (AstraZeneca)
- Set up central biobank for sample storage
- Initiated regulatory interactions via briefing meetings with EMA/FDA
- Established collaboration with Predictive Safety Testing Consortium (PSTC)

Key challenges for the consortium

	Gap/Challenge	How addressed?
Biomarker candidates	 Out of scope: Genetic susceptibility markers Preclinical assay validation Preclinical biomarker discovery 	 Covered by SAEC, DILIN, others Close collaboration with PSTC
	Lack of functional and susceptibility marker candidates	Biomarker discovery based on human cases from SAFE-T clinical studies, using mass spec and protein antibody array analyses of plasma samples
Methodology	 Due to low DILI prevalence, any new marker will have a low PPV. Improvement is mainly needed in specificity rather than sensitivity. Added value of new markers may be primarily as part of panels 	 Identify suitable marker panels Use advanced statistical methods such as lasso regression and gradient boosted models
Logistics	 Access to DILI cases Sampling requirements need to be aligned across different SAFE-T working groups Sampling to be seamlessly integrated into standard clinical trial workflows 	 Add two studies in high risk patients Dedicated cross-work package team to ensure alignment Provide standard protocol and ICF text sections Simplify sample collection, processing, and shipment Use samples available already

High risk patients I: nevirapine treatment, CDSS

Background

- Nevirapine is cheap and therefore widely used in Africa
- The MRC Centre for Drug Safety Science (CDSS) at the University of Liverpool has a strong clinical network in Malawi
- Previous work has successfully recruited a 1000 HIV patient cohort to examine the mechanisms of nevirapine toxicity at both the genetic and biochemical level
- Key side effect of nevirapine is hypersensitivity (rash, SJS, DILI)
- Overall incidence of hypersensitivity reactions was 57/1117 (5.1%), 12.3% of which were DILI cases

Current treatment protocol

- o Continue on nevirapine to treat through reaction if at all possible
- DILI only stop drug if patient develops jaundice
- LFTs are not routinely measured no facilities, and expensive
- o If transaminases rise, but patient is not jaundiced, the drug is continued

Slide by Munir Pirmohamed, MRC CDSS

Adaptation to nevirapine

- 7/1117 (0.6%) had abnormal TA and jaundice
- 1 (0.1%) patient died of liver failure
- 66 (5.9%) patients had abnormal ALT but no jaundice
 - o 7 (0.6%) grade III/IV
 - o 59 (5.3%) grade II

Slide by Munir Pirmohamed, MRC CDSS

New study in nevirapine treated HIV patients

- Implementation of a new 1000 patient nevirapine study
- All patients to provide pre-treatment sample (blood and urine)
- All patients to provide samples monthly out to 6 months post-treatment start
- Collect:
 - Matched samples (before and during treatment) of nevirapine-tolerant patients
 - Matched samples (before treatment, during acute DILI and post DILI) of patients that develop DILI but adapt
 - Matched samples (before treatment, DILI) of patients that have had to discontinue treatment

High risk patients II: APAP overdose, CDSS

- Ethical approval available to collect serum, plasma and urine from APAP overdose patients
- n = 21 patients plus n = 21 healthy volunteers planned
- Sample collection (plasma, serum, urine), patients:
 - t1: Presentation or 4hrs post-overdose,
 - t2: 12 18 hrs after first sample (morning ward round),
 - t3 : Subsequent morning ward round
 - t4: 1 month post-overdose
 - t5 : 3 month post-overdose
- If patients remain hospitalised after t3, samples will be taken every
 48 hours up to a maximum of 2 weeks post-presentation
- Sample collection (volunteers): daily for 3 days to collect plasma, serum and urine

Slide by Kevin Park, MRC CDSS

Using available samples: AZ HV study

Study design:

- 3x12 healthy volunteers, 12 males, 12 pre-menopausal females, 12 postmenopausal females
- Assess circadian and gender variation
- Daily sampling during menstrual cycle
- Male group with exercise to exhaustion
- CK18 measured using Pevivas M65 and M30 assays

Variability of cell death biomarkers

1º model

		Inter-Subject		Intra-Subject Inter-Day		Intra-Subject Intra-Day		Total	
Biomarker	N^a	SD^b	CV	SDb	CV	SDb	CV	SD^b	CV
M30	33	0.55	59%	0.06	6%	0.11	11%	0.56	61%
M65	33	0.26	27%	0.07	7%	0.11	11%	0.29	30%
nDNA	33	0.54	58%	0.39	40%	0.74	85%	0.99	130%

2° model using means from 24 hour periods

Biomarker		Inter-Subject		Intra-Su Inter-Da		Total		
	Nª	SD ^b	CV	SDb	CV	SDb	CV	
M30	33	0.54	58%	0.08	8%	0.55	59%	
M65	33	0.26	26%	0.09	9%	0.28	28%	
nDNA	33	0.58	63%	0.45	48%	0.73	84%	

Effect of gender and reproductive status on cell death biomarkers

Changes in cell death biomarkers with menstruation

Effect of exercise on M30

Summary

- Low intra subject variability of CK18 (M30 and M60 assays)
- No circadian rhythm of CK18
- No major effect of gender
- No significant effect of menstruation
- A brief period of exercise led to brief raises in CK18
 - No biochemical evidence of muscle damage
 - Subjects need to restrain from exercise for at least 4 hours before samples are taken

Acknowledgements

Alastair Greystoke CRUK-AZ Clinical Fellow for Biomarker Development

Study Delivery: Gail Harris, Tracey Randall, Kirsty Mackay Statistics: Martin Jenkins, Helen Mann, Athula Herath

Cognizant: Nazneen Solkar Sample Logging: Matthew Lancashire

CPU: Debbie Vinsun, Pascal De Feyter, Dilly Goonetilleke, Helen Redding, Raj Chetty, Emeline Ramos

Management: Andrew Hughes, Glen Clack, Caroline Dive

SAFE-T: next steps

- Set up consortium database
- Initiate prospective studies
- Include sampling into standard clinical trials
- Finalize agreement with PSTC

Acknowledgements

(Incomplete) SAFE-T participant list, team leaders

Neus Prats	Almirall	Katja Matheis	Boehringer Ingelheim	Andrew Nicholls	GSK	Steve Hall	Pfizer
Eric Massana	Almirall	Christine Rentzsch	Boehringer Ingelheim	Elaine A. Irving	GSK	Stefan Sultana	Pfizer
David Sciberras	Amgen	Arno Kalkuhl	Boehringer Ingelheim	Fiona J McClure	GSK	Michael Lawton	Pfizer
James Matcham	Amgen	Ulf Neumann	Aachen Hospital	Theo Dare	GSK	Silvia Guionaud	Pfizer
Patrice Cacoub	AP-HP	Volker Schmitz	Charité Hospital	Landry Cochard	Interface Europe	Denise Robinson- Gravatt	Pfizer
Thierry Poynard	AP-HP (GHPS)	Eckart Schott	Charité Hospital	Marc Loher	Interface Europe	Bernard Souberbielle	Pfizer
Mona Munteanu	AP-HP (GHPS)	Ralph Schindler	Charité Hospital	Piret Noukas	Interface Europe	Jim Dykens	Pfizer
Joe Keenan	ARGUTUS	Thomas Berg	Leipzig University	Nicole Schneiderhan- Marra	NMI	Peter Colman	Pfizer
Barry Hayes	ARGUTUS	Florian van Bömmel	Leipzig University	Jens Göpfert	NMI	Geoff Johnston	Pfizer
Mark Pinches	AstraZeneca	Lina Badimon	CSIC-ICCC	Stefanie Rimmele	NMI	Andrew Berridge	Pfizer
Ina Schuppe Koistinen	AstraZeneca	Teresa Padro	CSIC-ICCC	Hannes Planatscher	NMI	Jacky Vonderscher	Roche
Håkan Andersson	AstraZeneca	Xavier Sánchez- Vallve	CSIC-ICCC	Frank Dieterle	Novartis	Lucette Doessegger	Roche
Sally Price	AstraZeneca	Thomas Joos	EDI	Peter Hoffmann	Novartis	Joachim Eberle	Roche
Jesper Hedberg	AstraZeneca	Jean-Marc Vidal	EMA	Dietrich Rothenbacher	Novartis	Christoph Wandel	Roche
Björn Glinghammar	AstraZeneca	Hüseyin Firat	Firalis	Ursula Knauf	Novartis	Rodolfo Gasser	Roche
Jenny McKay	AstraZeneca	Kaïdre Bendjama	Firalis	John Prince	Novartis	Nadir Arber	SMC-Tel-Aviv
Axel Kretschmer	Bayer Schering	Peter Thomann	Firalis	Jeffrey Donohue	Novartis	Bernd Stowasser	Sanofi Aventis
Thomas Krahn	Bayer Schering	Béatrice Molac	Firalis	David Laurie	Novartis	Isabelle Clavier	Sanofi Aventis
Heidrun Ellinger-Ziegelbauer	Bayer Schering	Fuat Firat	Firalis	Marie Anne Valentin	Novartis	Magali Guffroy	Sanofi Aventis
Matthias Gottwald	Bayer Schering	John Haselden	GSK	Philip Bentley	Novartis	Joachim Tillner	Sanofi Aventis

Backups

Establishing extremal dependence

- If ALT is high and liver-related, we expect a novel biomarker to also be elevated
 - ALT and the biomarker are said to exhibit extremal dependence
 - Suggests quantifying extremal dependence and discarding biomarkers without strong extremal dependence on ALT
- How to establish extremal dependence?
 - Correlation in the bulk of the data does NOT imply correlation in the extremes
 - E.g. if X and Y are normally distributed, they are *independent* in the extremes unless corr(X, Y) = 1
 - Instead, use measures that specifically measure extremal dependence:
 - Coefficient of tail-dependence χ (chi): $\chi = P(X > u \mid Y > u)$ for a large quantile u (see Coles et al, 1999)
 - Multivariate conditional Spearman's ρ : $\rho_{MCS} = corr(X, Y \mid Y > u)$ (Schmid & Schmidt, 2007)

Identifying predictors of liver injury

- Many biomarkers, therefore many possible relationships to DILI
- Traditional approaches
 - Take each biomarker in turn
 - Can't find panels of biomarkers
 - Use stepwise regression methods
 - Well known to be deeply flawed
- Preferred approaches
 - The lasso (a.k.a. L1-penalized regression)
 - Gradient boosted models
 - Each can be used to choose a model with multiple biomarkers, using cross-validation to obtain unbiased estimate of model performance
 - See Hastie et al, 2009, for more detail

References

- S. Coles, J. E. Heffernan and J. Tawn, *Dependence measures for extreme value analyses, Extremes*, 4, 339 365, 1999
- T. Hastie, R. Tibshirani and J. Friedman, *The Elements of Statistical Learning (Second Edition)*, Springer, 2010
- F. Schmid and R. Schmidt, *Multivariate conditional versions of Spearman's Rho and related measures of tail dependence*, The Journal of Multivariate Analysis, 98, 1123 1140, 2007